Representation of the utility functional by two fuzzy integrals
نویسندگان
چکیده
In the cumulative prospect theory (CPT) the preference (utility functional) is represented by the difference of two Choquet integrals. We investigate representations of the corresponding functional by two fuzzy integrals, specially the difference representations of the asymmetric Choquet integral with respect to a signed fuzzy measure with bounded chain variation. We discuss non-monotone, real valued functional L, which is revised monotone and its asymmetric Choquet integral-based representation.
منابع مشابه
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملGreedy decomposition integrals
In this contribution we define a new class of non-linear integrals based on decomposition integrals. These integrals are motivated by greediness of many real-life situations. Another view on this new class of integrals is that it is a generalization of both the Shilkret and PAN integrals. Moreover, it can be seen as an iterated Shilkret integral. Also, an example in time-series analysis is prov...
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملGENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY
The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-doub...
متن کاملThe Sugeno fuzzy integral of concave functions
The fuzzy integrals are a kind of fuzzy measures acting on fuzzy sets. They can be viewed as an average membershipvalue of fuzzy sets. The value of the fuzzy integral in a decision making environment where uncertainty is presenthas been well established. Most of the integral inequalities studied in the fuzzy integration context normally considerconditions such as monotonicity or comonotonicity....
متن کامل